Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 252: 121251, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38324983

RESUMO

Nanofiltration (NF) membranes play a pivotal role in water treatment; however, the persistent challenge of membrane fouling hampers their stable application. This study introduces a novel approach to address this issue through the creation of a poly(3,4-ethylenedioxythiophene) (PEDOT)-based conductive membrane, achieved by synergistically coupling interfacial polymerization (IP) with in situ self-polymerization of EDOT. During the IP reaction, the concurrent generation of HCl triggers the protonation of EDOT, activating its self-polymerization into PEDOT. This interwoven structure integrates with the polyamide network to establish a stable selective layer, yielding a remarkable 90 % increase in permeability to 20.4 L m-2 h-1 bar-1. Leveraging the conductivity conferred by PEDOT doping, an electro-assisted cleaning strategy is devised, rapidly restoring the flux to 98.3 % within 5 min, outperforming the 30-minute pure water cleaning approach. Through simulations in an 8040 spiral-wound module and the utilization of the permeated salt solution for cleaning, the electro-assisted cleaning strategy emerges as an eco-friendly solution, significantly reducing water consumption and incurring only a marginal electricity cost of 0.055 $ per day. This work presents an innovative avenue for constructing conductive membranes and introduces an efficient and cost-effective electro-assisted cleaning strategy to effectively combat membrane fouling.


Assuntos
Membranas Artificiais , Compostos Orgânicos , Polimerização , Permeabilidade , Condutividade Elétrica
2.
Nano Lett ; 23(10): 4167-4175, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37155570

RESUMO

Surface patterning is a promising strategy to overcome the trade-off effect of separation membranes. Herein, a bottom-up patterning strategy of locking micron-sized carbon nanotube cages (CNCs) onto a nanofibrous substrate is developed. The strongly enhanced capillary force triggered by the abundant narrow channels in CNCs endows the precisely patterned substrate with excellent wettability and antigravity water transport. Both are crucial for the preloading of cucurbit[n]uril (CB6)-embeded amine solution to form an ultrathin (∼20 nm) polyamide selective layer clinging to CNCs-patterned substrate. The CNCs-patterning and CB6 modification result in a 40.2% increased transmission area, a reduced thickness, and a lowered cross-linking degree of selective layer, leading to a high water permeability of 124.9 L·m-2 h-1 bar-1 and a rejection of 99.9% for Janus Green B (511.07 Da), an order of magnitude higher than that of commercial membranes. The new patterning strategy provides technical and theoretical guidance for designing next-generation dye/salt separation membranes.

3.
J Am Chem Soc ; 144(14): 6483-6492, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35349274

RESUMO

Smart voltage-gated nanofiltration membranes have enormous potential for on-demand and precise separation of similar molecules, which is an essential element of sustainable water purification and resource recovery. However, the existing voltage-gated membranes are hampered by limited selectivity, stability, and scalability due to electroactive monomer dimerization. Here, for the first time, the host-guest recognition properties of cucurbit[7]uril (CB[7]) are used to protect the viologen derivatives and promote their assembly into the membrane by interfacial polymerization. Viologen functions as a voltage switch, whereas CB[7] complexation prevents its dimerization and improves its redox stability. The inhibited diffusion of the CB[7]-viologen complex enables the precise patterning of the surface structure. The resultant voltage-gated membrane displays 80% improved rejection performance, excellent recovery accuracy for similar molecules, and anti-fouling properties. This work not only provides an innovative strategy for the preparation of voltage-gated smart nanofiltration membranes but also opens up new avenues for ion-selective transmission in water treatment, bionic ion channels, and energy conversion.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Imidazóis , Hidrocarbonetos Aromáticos com Pontes/química , Dimerização , Imidazóis/química , Viologênios
4.
J Am Chem Soc ; 143(29): 10920-10929, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34270238

RESUMO

Constructing supramolecular cages with multiple subunits via weak intermolecular interactions is a long-standing challenge in chemistry. So far, π-stacked supramolecular cages still remain unexplored. Here, we report a series of π-stacked cage based hierarchical self-assemblies. The π-stacked cage (π-MX-cage) is assembled from 16 [MXL]+ ions (M = Mn2+, Co2+; X = Br-, SCN-, Cl-; and L = tris(2-benzimidazolylmethyl)amine) via 18 intermolecular π-stacking interactions. The tetrahedral cage, consisting of four [MXL]+ ions as the vertexes and six pairs of [MXL]+ ions as the edges, features 48 exterior N-H hydrogen bond donors for hydrogen bond formation with guest molecules. By variation of the M2+/X- pair, the π-MX-cage demonstrates unique versatility for incorporating a wide variety of species via different hydrogen-bonding modes during the assembly of hierarchical superstructures. In specific, the π-MnBr-cages encapsulate acetonitrile (CH3CN) or cis-1,3,5-cyclohexanetricarbonitrile (cis-HTN) molecules in the central voids, while a core-shell tetrahedral inorganic cluster [Mn(H2O)6]@([Mn(H2O)4]4[Br42-]6) (Mn@Mn4-cage) is captured within the interstitial regions between cages. The π-CoSCN-cages are capable of stabilizing reactive sulfur-containing species, such as S2O42-, S2O62-, and HSO3- ions, in the hierarchical superstructure. Finally, H2PO4- ions are incorporated between π-CoCl-cages, resulting in an inorganic mesoporous framework. These results provide insights into further exploring the chemistry and hierarchical assembly of supramolecular cages based on π-π stacking intermolecular interactions.

5.
Nano Lett ; 20(11): 8185-8192, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33125239

RESUMO

Highly permselective nanostructured membranes are desirable for the energy-efficient molecular sieving on the subnanometer scale. The nanostructure construction and charge functionalization of the membranes are generally carried out step by step through the conventional layer-by-layer coating strategy, which inevitably brings about a demanding contradiction between the permselective performance and process efficiency. For the first time, we report the concurrent construction of the well-defined molecular sieving architectures and tunable surface charges of nanofiltration membranes through precisely controlled release of the nanocapsule decorated polyethyleneimine and carbon dioxide. This novel strategy not only substantially shortens the fabrication process but also leads to impressive performance (permeance up to 37.4 L m-2 h-1 bar-1 together with a rejection 98.7% for Janus Green B-511 Da) that outperforms most state-of-art nanofiltration membranes. This study unlocks new avenues to engineer next-generation molecular sieving materials simply, precisely, and cost efficiently.

6.
Nano Lett ; 20(4): 2717-2723, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32207960

RESUMO

Low concentration alcohols produced by state-of-the-art biological fermentation restrict subsequent purification processes for chemical, pharmaceutical, biofuel, and other applications. Herein, a rarely reported cucurbituril[n] (n = 6, 8) is employed to pattern the thin-film composite membranes with controllable and quantifiable nanostrand structures through a host-guest strategy. The resulting nanofiltration membrane with such morphology is the first report that exhibits excellent separation performance for isopropyl alcohol (IPA) and water, condensing the initial 0.5 wt % IPA aqueous solution to 9.0 wt %. This not only provides a novel strategy for patterning nanostructural morphology but also makes nanofiltration membranes promising for alcohol condensation in the biological fermentation industry that may reduce energy consumption and postprocessing costs.

7.
ACS Appl Mater Interfaces ; 12(1): 580-590, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31809020

RESUMO

Performance declination of nanofiltration (NF) membranes caused by concentration polarization (CP) and membrane fouling has severely restricted their practical application in many fields. This work reports the construction of a novel interlayer between the substrate and the selective layer of conventional composite membranes by coordinating regulation of carbon quantum dots (CQDs) and polydopamine (PDA). Unlike traditional methods that treat CP and fouling separately, the new strategy grants the membrane with dual functions at one time. First, the insertion of the PDA-CQDs layer reformulates the interfacial polymerization process that reduces the solute transport resistance and mitigates the CP issue. Second, the sandwiched photoactive CQDs can degrade organic molecules adsorbed on the membrane surface under visible light, which is promising for low-cost fouling remediation. This study may offer valuable insights into the preparation of durable self-cleaning NF membranes for the effective treatment of complex wastewater in various industries.

8.
Chemistry ; 24(10): 2365-2369, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29315875

RESUMO

Three new proton conductors with simple structures based on isolated olyoxometalate anions as well as protonated imidazole and benzimidazole, namely, NNU-6-8, have been successfully prepared by hydrothermal reaction. We could control the number of proton sources by selecting different types and changing the charges of POM anions. The single crystal sample of NNU-6 along a-axis shows a highest proton conductivity of 1.91×10-2  S cm-1 , which is two and three orders of magnitude higher than that of 2.42×10-4 and 8.90×10-5  S cm-1 along b- and c-axes, respectively, due to the more unobstructed H-bonding network and stronger π-π stacking between benzimidazole rings as proton-transferring pathway along a-axis than that along b and c axes. It is a straightforward model to understand the metaphysical proton-conducting process, and this is the first time to put forward the idea that π-π stacking could assist proton transfer and be in favor of proton conduction, which has been demonstrated by calculating potential energy surfaces of proton transfer between benzimidazole molecules.

9.
Chem Commun (Camb) ; 53(55): 7804-7807, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28653075

RESUMO

Two extremely rare ß-cyclodextrin (ß-CD) supported metal-organic frameworks (MOFs), CD-MOF-1 and CD-MOF-2, were induced to crystallize for the first time through a template-induced approach. The targeted CD-MOFs were employed to perform controlled drug delivery and cytotoxicity assays that confirmed their favourable biological potential of being used as drug carriers.


Assuntos
Produtos Biológicos/química , Sistemas de Liberação de Medicamentos , Estruturas Metalorgânicas/química , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Células Hep G2 , Humanos , Modelos Moleculares , Tamanho da Partícula , Porosidade , Relação Estrutura-Atividade , Propriedades de Superfície , beta-Ciclodextrinas/química
10.
Adv Mater ; 28(40): 8906-8911, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27553983

RESUMO

A highly effective, low-cost strategy for improved photocatalytic efficiency and stability of CdS is described. Based on the integration of hexagonal-cubic core-shell architecture with nanorod morphology, the concentric CdS nanorod phase junctions (NRPJs) obtained demonstrate extremely high H2 production rate and unprecedented photocatalytic stability.

11.
Chemistry ; 22(27): 9299-304, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27243145

RESUMO

Two novel polyoxometalate (POM)-based coordination polymers, namely, [Co(bpz)(Hbpz)][Co(SO4 )0.5 (H2 O)2 (bpz)]4 [PMo(VI) 8 Mo(V) 4 V(IV) 4 O42 ]⋅13 H2 O (NENU-530) and [Ni2 (bpz)(Hbpz)3 (H2 O)2 ][PMo(VI) 8 Mo(V) 4 V(IV) 4 O44 ]⋅8 H2 O (NENU-531) (H2 bpz=3,3',5,5'-tetramethyl-4,4'-bipyrazole), were isolated by hydrothermal methods, which represented 3D networks constructed by POM units, the protonated ligand and sulfate group. In contrast with most POM-based coordination polymers, these two compounds exhibit exceptional excellent chemical and thermal stability. More importantly, NENU-530 shows a high proton conductivity of 1.5×10(-3)  S cm(-1) at 75 °C and 98 % RH, which is one order of magnitude higher than that of NENU-531. Furthermore, structural analysis and functional measurement successfully demonstrated that the introduction of sulfate group is favorable for proton conductivity. Herein, the syntheses, crystal structures, proton conductivity, and the relationship between structure and property are presented.

12.
Nutrients ; 8(5)2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27136583

RESUMO

Long-term use of fish oil (FO) is known to induce oxidative stress and increase the risk of Alzheimer's disease in humans. In the present study, peanut skin extract (PSE), which has strong antioxidant capacity, was mixed with FO to reduce its side effects while maintaining its beneficial properties. Twelve-week Institute of Cancer Research (ICR) mice were used to conduct animal behavior tests in order to evaluate the memory-enhancing ability of the mixture of peanut skin extract and fish oil (MPF). MPF significantly increased alternations in the Y-maze and cognitive index in the novel object recognition test. MPF also improved performance in the water maze test. We further sought to understand the mechanisms underlying these effects. A significant decrease in superoxide dismutase (SOD) activity and an increase in malonyldialdehyde (MDA) in plasma were observed in the FO group. The MPF group showed reduced MDA level and increased SOD activity in the plasma, cortex and hippocampus. Furthermore, the gene expression levels of brain-derived neurotrophic factor (BDNF) and cAMP responsive element-binding protein (CREB) in the hippocampus were increased in the MPF group, while phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinase (ERK) and CREB in the hippocampus were enhanced. MPF improves memory in mice via modulation of anti-oxidative stress and activation of BDNF/ERK/CREB signaling pathways.


Assuntos
Arachis/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Óleos de Peixe/farmacologia , Extratos Vegetais/farmacologia , Animais , Antioxidantes , Fator Neurotrófico Derivado do Encéfalo/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Óleos de Peixe/administração & dosagem , Óleos de Peixe/química , Regulação da Expressão Gênica/efeitos dos fármacos , Mesotelina , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química
13.
ACS Appl Mater Interfaces ; 8(7): 4516-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26835705

RESUMO

Heteronanomaterials composed of suitable semiconductors enable the direct conversion from solar power into clean and renewable energy. Ternary heterostructures with appropriate configuration and morphology possess rich and varied properties, especially for improving the photocatalytic activity and stability synchronously. However, suitable ternary heterostructure prototypes and facile while effective strategy for modulating their morphology and configuration are still scarce. Herein, various ternary ZnS-CdS-Zn(1-x)Cd(x)S heterostructures with tunable morphology (0 to 2 D) and semiconductor configurations (randomly distributed, interface mediated, and quantum dots sensitized core@shell heterostructures) were facilely synthesized via one-pot hydrothermal method resulting from the different molecular structures of the amine solvents. Semiconductor morphology, especially configuration of the ternary heterostructure, shows dramatic effect on their photocatalytic activity. The CdS sensitized porous Zn(1-x)CdxS@ZnS core@shell takes full advantage of ZnS, Zn(1-x)Cd(x)S and CdS and shows the maximal photocatalytic H2-production rate of 100.2 mmol/h/g and excellent stability over 30 h. This study provides some guidelines for the design and synthesis of high-performance ternary heterostructure via modulation of semiconductor configuration and morphology using one-pot method.

14.
Inorg Chem ; 54(22): 10978-84, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26513233

RESUMO

Standard high-temperature solid-state reactions of NaCl, Nb2O5, and SeO2 resulted in two new sodium selenites containing a second-order Jahn-Teller (SOJT) distorted Nb(5+) cation, namely, Na2Nb4O7(SeO3)4 (P1̅; 1) and NaNbO(SeO3)2 (Cmc21; 2). Compound 1 exhibits an unusual 3D [Nb4O7(SeO3)4](2-) anionic network composed of 2D [Nb4O11(SeO3)2](6-) layers which are further bridged by additional SeO3(2-) anions via corner sharing; the 2D [Nb4O11(SeO3)2](6-) layer is formed by unusual quadruple [Nb4O17](14-) niobium oxide chains of corner-sharing NbO6 octahedra being further interconnected by selenite anions via Nb-O-Se bridges. The polar compound 2 features a 1D [NbO(SeO3)2](-) anionic chain in which two neighboring Nb(5+) cations are bridged by one oxo and two selenite anions. The alignments of the polarizations from the NbO6 octahedra in 2 led to a strong SHG response of ∼7.8 × KDP (∼360 × α-SiO2), which is the largest among all phases found in metal-Nb(5+)-Se(4+)/metal-Nb(5+)-Te(4+)-O systems. Furthermore, the material is also type I phase matchable. The above experimental results are consistent with those based on DFT theoretical calculations. Thermal stabilities and optical properties for both compounds are also reported.

15.
Dalton Trans ; 44(25): 11420-8, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26016567

RESUMO

Three new transition metal copper(II) selenites or tellurites, namely, CdCu(SeO3)2 (1), HgCu(SeO3)2 ()2, and Hg2Cu3(Te3O8)2 (3), have been obtained by conventional hydrothermal reactions of CdO (or Hg2Cl2), CuO and SeO2 (or TeO2). Compounds 1 and 2 are isostructural and crystallize in P2(1)/c. Their structures feature a 3D anionic framework of Cu(SeO3)2(2-) with 1D channels of eight-membered rings (MRs) along the c-axis and a-axis, respectively, which are filled by Cd(2+) or Hg(2+) cations. Compound 3 crystallizes in a tetragonal system of space group P42(1)2. Its structure is characterized by a [Cu3(Te3O8)2](2-) honeycomb layer composed of [Te3O8](4-) anions interconnected by Cu(2+) ions with 1D channels of 8-MRs along the c-axis. TOPOS analysis indicates that the copper(ii) tellurite layer exhibits a new topological structure with a Schläfli symbol of {4(6)·8(9)}(2){4(6)}(3). The above anionic copper(II) tellurite layers are further linked by dumbbell Hg2(2+) cations to form a novel 3D framework. Magnetic measurements based on magnetic susceptibility and heat capacity indicate that compounds 1 and 2 show a spin-singlet ground state with a spin gap based on the [Cu2O8](12-) dimeric model, whereas compound e3 xhibits a 2D spin-system with an antiferromagnetic ordering around 25 K correlated with its honeycomb [Cu3(Te3O8)2](2-) layer. Furthermore, crystalline structures, thermal stabilities, IR spectra and UV-Vis diffuse reflectance spectra have also been studied.

16.
Inorg Chem ; 54(8): 3875-82, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25835387

RESUMO

Two new cesium selenites containing TaO6 or TiO4F2 octahedra, namely, Cs(TaO2)3(SeO3)2 (1) and Cs(TiOF)3(SeO3)2 (2), have been prepared using standard high temperature solid-state method and hydrothermal reaction, respectively. Compound 1 crystallizes in P3̅m1 and features an unusual [(TaO2)3(SeO3)2](-) sandwich-like double layer in which two [Ta(1)O3(SeO3)](3-) layers are bridged by central Ta(2)O6 octahedra via corner-sharing, whereas Cs(TiOF)3(SeO3)2 with a polar space group P63mc features an interesting hexagonal tungsten oxide (HTO) layered topology and presents a strong second harmonic generation (SHG) of about 5 × KDP (KH2PO4), which is much larger than those of A(VO2)3(QO3)2 (A = K, Tl, Rb, Cs, or NH4; Q = Se, Te) with a similar HTO layered structure. Cs(TiOF)3(SeO3)2 is also type-I phase matching. The SHG of above-mentioned HTO materials can be enhanced greatly with the replacement of VO6 octahedra by TiO4F2 octahedra. Furthermore, thermal stabilities, UV-vis diffuse reflectance spectra, infrared spectra, relationship between crystal structure and SHG, and theoretical calculations were also reported.

17.
Inorg Chem ; 53(16): 8816-24, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25102013

RESUMO

Hydrothermal reactions of PbCO3 (or PbCl2), V2O5, and SeO2 in KOH solution or HF solution resulted in three new lead(II)-vanadium(V) mixed-metal selenites, namely, Pb4V6O16(SeO3)3(H2O) (1), Pb2VO2(SeO3)2Cl (2), and PbVO2(SeO3)F (3). Compounds 1 and 2 are polar (space group P21), whereas compound 3 is centrosymmetric (space group Pbca). Compound 1 displays an unusual [V6O16(SeO3)3](8-) anionic chain, which is composed by a 1D [V4O12](2-) anionic chain that is further decorated by dimeric [V2O6(SeO3)3](8-) units via corner-sharing. Compound 2 features two types of 1D chains, a cationic [Pb2Cl](3+) chain and a [VO2(SeO3)2](3-) anionic chain, whereas compound 3 contains dimeric [V2O4(SeO3)2F2](2-) units. The powder second-harmonic-generating (SHG) measurements indicate that compound 1 shows a weak SHG response of about 0.2 × KDP (KH2PO4) under 1400 nm laser radiation. Thermal stability and optical properties as well as theoretical calculations based on density functional theory methods were also performed.

18.
Chem Commun (Camb) ; 49(85): 9965-7, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24042185

RESUMO

The replacement of NbO6 octahedra in Pb2NbO2(SeO3)2Cl by the TiO5F octahedra in Pb2TiOF(SeO3)2Cl induced a very large SHG enhancement from 2.3 × to 9.6 × KDP (KH2PO4), and both materials are type-I phase matchable. Theoretical calculations based on DFT methods indicate that the inclusion of F(-) anions in the d(0)-TM octahedral coordination unit has a great impact on the band structure and the SHG enhancement of the material.

19.
Artigo em Inglês | MEDLINE | ID: mdl-23660246

RESUMO

Silica gel column chromatography combined with high performance counter-current chromatography (HPCCC) was employed for the separation of potential anti-tumor compounds from a petroleum ether fraction of a crude extract of Zanthoxylum ailanthoides Sieb. & Zucc. This traditional Chinese medicine was recently found to display high inhibitory activity against A-549 human cancer cells in vitro and Lewis lung cancer in vivo. A 75% aqueous ethanol extract of the stem bark of Z. ailanthoides was fractionated with petroleum ether, ethyl acetate and n-butanol. In this paper, the petroleum ether fraction was pre-separated by silica gel column chromatography with a petroleum ether-ethyl acetate gradient. Two fractions were further separated and purified by HPCCC using n-hexane-ethyl acetate-methanol-water (3:1:2:1, v/v) and petroleum-ethyl acetate-methanol-water (8:6:7:7, v/v). Finally, coumarins and lignans including luvangetin, xanthyletin, hinokinin and asarinin were isolated and identified by MS, (1)H and (13)C NMR. In total, 56mg of xanthyletin (1), 140mg of hinokinin (2), 850mg of luvangetin (3) and 74mg of asarinin (4) were obtained from approximately 50g of petroleum ether extract, in 96.0%, 94.0%, 99.0% and 94.0% purity, respectively, as determined by HPLC. The separation method proved to be efficient, especially for those minor components.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Distribuição Contracorrente/métodos , Casca de Planta/química , Sílica Gel/química , Zanthoxylum/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/isolamento & purificação , 4-Butirolactona/farmacologia , Benzodioxóis , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/isolamento & purificação , Cumarínicos/farmacologia , Dioxóis/isolamento & purificação , Dioxóis/farmacologia , Humanos , Lignanas/isolamento & purificação , Lignanas/farmacologia
20.
J Nanosci Nanotechnol ; 10(8): 5471-4, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21125921

RESUMO

Large-scale SnO2 mesoporous nanowires have been successfully synthesized by an improved sol-gel method within the nanochannels of porous anodic alumina templates. In this method, chloride of stannic and urea are used as precursors, chloride of stannic is acting as source of tin ions, and urea offers a basic medium through its hydrolysis. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and selected-area electron diffraction are used to characterize the SnO2 mesoporous nanowires. It is found that the as-prepared nanowires consist of SnO2 nanoparticles and pores. They can be indexed as rutile structures and diameters are about 50-70 nm. The growth mechanism of the mesoporous nanowires is also been discussed. The band gap of the as-prepared mesoporous nanowires is 3.735 eV, determined by UV/visible absorption spectral results. The SnO2 mesoporous nanowires show strong and stable photoluminescence with emission peak centered at 3.730 eV, which has never been reported in nanowires. It could be attributed to the exciton recombination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...